7,248 research outputs found

    Two-dimensional two-component plasma with adsorbing impurities

    Full text link
    We study the behavior of the two-dimensional two-component plasma in the presence of some adsorbing impurities. Using a solvable model, we find analytic expressions for the thermodynamic properties of the plasma such as the nn-body densities, the grand potential, and the pressure. We specialize in the case where there are one or two adsorbing point impurities in the plasma, and in the case where there are one or two parallel adsorbing lines. In the former case we study the effective interaction between the impurities, due to the charge redistribution around them. The latter case is a model for electrodes with adsorbing sticky sites on their surface

    Numerical calculation of ion runaway distributions

    Get PDF
    Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments, however limitations of previous analytic work have prevented definite conclusions. In this work we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fields required for ion acceleration are determined for various plasma compositions, ion species and temperatures, and the potential for excitation of toroidal Alfv\'en eigenmodes during tokamak disruptions is considered.Comment: 25 pages, 8 figure

    Plasma Resonance in Layered Normal Metals and Superconductors

    Full text link
    A microscopic theory of the plasma resonance in layered metals is presented. It is shown that electron-impurity scattering can suppress the plasma resonance in the normal state and sharpen it in the superconducting state. Analytic properties of the conductivity for the electronic transport perpendicular to the layers are investigated. The dissipative part of the electromagnetic response in c-direction has been found to depend on frequency in a highly non-trivial manner. This sort of behavior cannot be incorporated in the widely used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version. Several formulas and a number of misprints are corrected. A problem with printing of figures is fixe

    First principles of modelling the stabilization of microturbulence by fast ions

    Get PDF
    The observation that fast ions stabilize ion-temperature-gradient-driven microturbulence has profound implications for future fusion reactors. It is also important in optimizing the performance of present-day devices. In this work, we examine in detail the phenomenology of fast ion stabilization and present a reduced model which describes this effect. This model is derived from the high-energy limit of the gyrokinetic equation and extends the existing "dilution" model to account for nontrivial fast ion kinetics. Our model provides a physically-transparent explanation for the observed stabilization and makes several key qualitative predictions. Firstly, that different classes of fast ions, depending on their radial density or temperature variation, have different stabilizing properties. Secondly, that zonal flows are an important ingredient in this effect precisely because the fast ion zonal response is negligible. Finally, that in the limit of highly-energetic fast ions, their response approaches that of the "dilution" model; in particular, alpha particles are expected to have little, if any, stabilizing effect on plasma turbulence. We support these conclusions through detailed linear and nonlinear gyrokinetic simulations.Comment: 29 pages, 10 figures, 3 table

    Bulk and edge correlations in the compressible half-filled quantum Hall state

    Full text link
    We study bulk and edge correlations in the compressible half-filled state, using a modified version of the plasma analogy. The corresponding plasma has anomalously weak screening properties, and as a consequence we find that the correlations along the edge do not decay algebraically as in the Laughlin (incompressible) case, while the bulk correlations decay in the same way. The results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions in the bulk, reflected by the weak screening in the plasma analogue, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of {\em electrons} (with an appropriate boundary condition). We finally comment on a possible scenario, in which the Laughlin-like dynamical edge correlations may nevertheless be realized.Comment: package now includes the file epsfig.sty, needed to incorporate properly the 8 magnificent figure

    Multiexciton molecules in the hexaborides

    Full text link
    We investigate multiexciton bound states in a semiconducting phase of divalent hexaborides. Due to three degenerate valleys in both the conduction and valence bands the binding energy of a 6-exciton molecule is greatly enhanced by the shell effect. The ground state energies of multiexciton molecules are calculated using the density functional formalism. We also show that charged impurities stabilize multiexciton complexes leading to condensation of localized excitons. These complexes can act as nucleation centers of local moments.Comment: RevTEX, 7 pages with 3 figure

    Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma

    Full text link
    The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et. al. (2017b) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current

    Anisotropic thermal emission from magnetized neutron stars

    Full text link
    The thermal emission from isolated neutron stars is not well understood. The X-ray spectrum is very close to a blackbody but there is a systematic optical excess flux with respect to the extrapolation to low energy of the best blackbody fit. This fact, in combination with the observed pulsations in the X-ray flux, can be explained by anisotropies in the surface temperature distribution.We study the thermal emission from neutron stars with strong magnetic fields in order to explain the origin of the anisotropy. We find (numerically) stationary solutions in axial symmetry of the heat transportequations in the neutron star crust and the condensed envelope. The anisotropy in the conductivity tensor is included consistently. The presence of magnetic fields of the expected strength leads to anisotropy in the surface temperature. Models with toroidal components similar to or larger than the poloidal field reproduce qualitatively the observed spectral properties and variability of isolated neutron stars. Our models also predict spectral features at energies between 0.2 and 0.6 keV.Comment: 18 pages, 19 figures, version accepted for publication in A&
    • …
    corecore